Joining data

Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.

Steps: 1-6

  1. Load the R packages we will use
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
  1. Which variables are the same in both data sets.
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with
drug_subset <- drug_cos %>% 
  select(ticker, year, grossmargin) %>% 
  filter(year== 2018)

health_subset <- health_cos %>% 
  select(ticker, year, revenue,gp, industry) %>% 
  filter(year== 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 × 6
   ticker  year grossmargin     revenue          gp industry          
   <chr>  <dbl>       <dbl>       <dbl>       <dbl> <chr>             
 1 ZTS     2018       0.672  5825000000  3914000000 Drug Manufacturer…
 2 PRGO    2018       0.387  4731700000  1831500000 Drug Manufacturer…
 3 PFE     2018       0.79  53647000000 42399000000 Drug Manufacturer…
 4 MYL     2018       0.35  11433900000  4001600000 Drug Manufacturer…
 5 MRK     2018       0.681 42294000000 28785000000 Drug Manufacturer…
 6 LLY     2018       0.738 24555700000 18125700000 Drug Manufacturer…
 7 JNJ     2018       0.668 81581000000 54490000000 Drug Manufacturer…
 8 GILD    2018       0.781 22127000000 17274000000 Drug Manufacturer…
 9 BMY     2018       0.71  22561000000 16014000000 Drug Manufacturer…
10 BIIB    2018       0.865 13452900000 11636600000 Drug Manufacturer…
11 AMGN    2018       0.827 23747000000 19646000000 Drug Manufacturer…
12 AGN     2018       0.861 15787400000 13596000000 Drug Manufacturer…
13 ABBV    2018       0.764 32753000000 25035000000 Drug Manufacturer…

Question: join_ticker

drug_cos_subset <- drug_cos %>% 
  filter(ticker== "MYL")

drug_cos_subset
# A tibble: 8 × 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MYL    Myla… United …        0.245       0.418     0.088 0.161 0.146
2 MYL    Myla… United …        0.244       0.428     0.094 0.163 0.184
3 MYL    Myla… United …        0.228       0.44      0.09  0.153 0.209
4 MYL    Myla… United …        0.242       0.457     0.12  0.169 0.283
5 MYL    Myla… United …        0.243       0.447     0.09  0.133 0.089
6 MYL    Myla… United …        0.19        0.424     0.043 0.052 0.044
7 MYL    Myla… United …        0.272       0.402     0.058 0.121 0.054
8 MYL    Myla… United …        0.258       0.35      0.031 0.074 0.028
# … with 1 more variable: year <dbl>
combo_df <- drug_cos_subset %>% 
  left_join(health_cos)

combo_df
# A tibble: 8 × 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MYL    Myla… United …        0.245       0.418     0.088 0.161 0.146
2 MYL    Myla… United …        0.244       0.428     0.094 0.163 0.184
3 MYL    Myla… United …        0.228       0.44      0.09  0.153 0.209
4 MYL    Myla… United …        0.242       0.457     0.12  0.169 0.283
5 MYL    Myla… United …        0.243       0.447     0.09  0.133 0.089
6 MYL    Myla… United …        0.19        0.424     0.043 0.052 0.044
7 MYL    Myla… United …        0.272       0.402     0.058 0.121 0.054
8 MYL    Myla… United …        0.258       0.35      0.031 0.074 0.028
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

co_name <- combo_df %>% 
  distinct(name) %>% 
  pull()

co_location <- combo_df %>% 
  distinct(location) %>% 
  pull()

co_industry <- combo_df %>% 
  distinct(industry) %>% 
  pull()

Put the r inline commands used in the blanks below when you knit the document the results of the commands will displayed in your text

The company Mylan NV in United Kingdomand a member of the Drug Manufacturers - Specialty & Generic industry group.


combo_df_subset <- combo_df %>% 
  select(year, grossmargin, netmargin, revenue, gp, netincome)

combo_df_subset
# A tibble: 8 × 6
   year grossmargin netmargin     revenue         gp netincome
  <dbl>       <dbl>     <dbl>       <dbl>      <dbl>     <dbl>
1  2011       0.418     0.088  6129825000 2563364000 536810000
2  2012       0.428     0.094  6796100000 2908300000 640900000
3  2013       0.44      0.09   6909100000 3040300000 623700000
4  2014       0.457     0.12   7719600000 3528000000 929400000
5  2015       0.447     0.09   9429300000 4216100000 847600000
6  2016       0.424     0.043 11076900000 4697000000 480000000
7  2017       0.402     0.058 11907700000 4783100000 696000000
8  2018       0.35      0.031 11433900000 4001600000 352500000

combo_df_subset %>% 
  mutate(grossmargin_check= gp / revenue,
 close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 × 8
   year grossmargin netmargin     revenue         gp netincome
  <dbl>       <dbl>     <dbl>       <dbl>      <dbl>     <dbl>
1  2011       0.418     0.088  6129825000 2563364000 536810000
2  2012       0.428     0.094  6796100000 2908300000 640900000
3  2013       0.44      0.09   6909100000 3040300000 623700000
4  2014       0.457     0.12   7719600000 3528000000 929400000
5  2015       0.447     0.09   9429300000 4216100000 847600000
6  2016       0.424     0.043 11076900000 4697000000 480000000
7  2017       0.402     0.058 11907700000 4783100000 696000000
8  2018       0.35      0.031 11433900000 4001600000 352500000
# … with 2 more variables: grossmargin_check <dbl>,
#   close_enough <lgl>

combo_df_subset %>% 
  mutate(netmargin_check = netincome / revenue,
         close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 × 8
   year grossmargin netmargin revenue     gp netincome netmargin_check
  <dbl>       <dbl>     <dbl>   <dbl>  <dbl>     <dbl>           <dbl>
1  2011       0.418     0.088 6.13e 9 2.56e9 536810000          0.0876
2  2012       0.428     0.094 6.80e 9 2.91e9 640900000          0.0943
3  2013       0.44      0.09  6.91e 9 3.04e9 623700000          0.0903
4  2014       0.457     0.12  7.72e 9 3.53e9 929400000          0.120 
5  2015       0.447     0.09  9.43e 9 4.22e9 847600000          0.0899
6  2016       0.424     0.043 1.11e10 4.70e9 480000000          0.0433
7  2017       0.402     0.058 1.19e10 4.78e9 696000000          0.0584
8  2018       0.35      0.031 1.14e10 4.00e9 352500000          0.0308
# … with 1 more variable: close_enough <lgl>

Question “Summarize_industry”

*Use the health_cos data

health_cos %>% 
  group_by(industry) %>% 
  summarize(mean_grossmargin_percent = mean(gp / revenue)*100,
            median_grossmargin_percent = median(gp / revenue)*100,
            min_grossmargin_percent = min(gp / revenue)*100,
            max_grossmargin_percent= max(gp / revenue)*100)
# A tibble: 9 × 5
  industry          mean_grossmargi… median_grossmar… min_grossmargin…
  <chr>                        <dbl>            <dbl>            <dbl>
1 Biotechnology                 92.5            92.7             81.7 
2 Diagnostics & Re…             50.5            52.7             28.0 
3 Drug Manufacture…             75.4            76.4             36.8 
4 Drug Manufacture…             47.9            42.6             34.3 
5 Healthcare Plans              20.5            19.6             10.0 
6 Medical Care Fac…             55.9            37.4             28.1 
7 Medical Devices               70.8            72.0             53.2 
8 Medical Distribu…             10.4             5.38             2.49
9 Medical Instrume…             53.9            52.8             40.5 
# … with 1 more variable: max_grossmargin_percent <dbl>

-# Question: inline_ticker

health_cos_subset <- health_cos %>% 
  filter(ticker=="ZTS")

*Display `health_cos_subset

health_cos_subset
# A tibble: 8 × 11
  ticker name      revenue     gp    rnd netincome  assets liabilities
  <chr>  <chr>       <dbl>  <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 ZTS    Zoetis I…  4.23e9 2.58e9 4.27e8    2.45e8 5.71e 9  1975000000
2 ZTS    Zoetis I…  4.34e9 2.77e9 4.09e8    4.36e8 6.26e 9  2221000000
3 ZTS    Zoetis I…  4.56e9 2.89e9 3.99e8    5.04e8 6.56e 9  5596000000
4 ZTS    Zoetis I…  4.78e9 3.07e9 3.96e8    5.83e8 6.59e 9  5251000000
5 ZTS    Zoetis I…  4.76e9 3.03e9 3.64e8    3.39e8 7.91e 9  6822000000
6 ZTS    Zoetis I…  4.89e9 3.22e9 3.76e8    8.21e8 7.65e 9  6150000000
7 ZTS    Zoetis I…  5.31e9 3.53e9 3.82e8    8.64e8 8.59e 9  6800000000
8 ZTS    Zoetis I…  5.82e9 3.91e9 4.32e8    1.43e9 1.08e10  8592000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>

Run the code below

health_cos_subset %>% 
  distinct(name) %>% 
  pull(name)
[1] "Zoetis Inc"
co_name <- health_cos_subset %>% 
distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your test

The name of the company ticker ZTS is Zoetis Inc in the following chunk

co_industry <- health_cos_subset %>% 
distinct(industry) %>% 
  pull(industry)

This is outside the Rchunk. Put the r inline commands used in the blanks below. When you knit the document, the results of the commands will be displayed in your text.

The company Zoetis Inc is a member of Drug Manufacturers - Specialty & Generic group

Steps 7-11

  1. Prepare the data for the plots
df <- health_cos %>% 
  group_by(industry) %>% 
  summarize(med_rnd_rev = median(rnd/revenue))
  1. Use glimpse to glimpse the data for the plots
df %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …
  1. Create a static bar chart
ggplot(data = df, mapping = aes(
  x = reorder(industry, med_rnd_rev ),
  y= med_rnd_rev
  )) +
  geom_col() +
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_classic()

10- Save the last plot to preview.png and add the yaml:chunk at the top

ggsave(filename = "preview.png" ,
       path = here::here("_posts", "2022-03-04-joining-data"))
  1. Create an interactive bar chart using the package echarts4r
df %>% 
  arrange(med_rnd_rev) %>% 
  e_charts(
    x = industry,
    ) %>% 
  e_bar(
    serie = med_rnd_rev,
    name = "median"
    )   %>% 
  e_flip_coords() %>% 
  e_tooltip() %>% 
  e_title(
    text = "median industry R&D expenditures",
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
  ) %>% 
  e_y_axis(
    show = FALSE
  ) %>% 
  e_theme("infografic")