Reading and writing data

code for topic 4

  1. Load the R packages we will use
  1. Download \(CO_2\) emissions per capita from Our world in Data into the directory for this post.

3- Assign the location of the file to file_csv The data should be the same directory as the file

Read the data into R and assign it to emissions

file_csv  <-  here("_posts",  
                   "2022-02-17-reading-and-writing-data", 
                   "co-emissions-per-capita.csv")  

emissions   <-  read_csv(file_csv)

4- Show the first 10 rows (observations of)emissions

emissions
# A tibble: 23,307 × 4
   Entity      Code   Year `Annual CO2 emissions (per capita)`
   <chr>       <chr> <dbl>                               <dbl>
 1 Afghanistan AFG    1949                              0.0019
 2 Afghanistan AFG    1950                              0.0109
 3 Afghanistan AFG    1951                              0.0117
 4 Afghanistan AFG    1952                              0.0115
 5 Afghanistan AFG    1953                              0.0132
 6 Afghanistan AFG    1954                              0.013 
 7 Afghanistan AFG    1955                              0.0186
 8 Afghanistan AFG    1956                              0.0218
 9 Afghanistan AFG    1957                              0.0343
10 Afghanistan AFG    1958                              0.038 
# … with 23,297 more rows

5- Start with emissions data THEN

tidy_emissions   <- emissions %>%
  clean_names()

tidy_emissions
# A tibble: 23,307 × 4
   entity      code   year annual_co2_emissions_per_capita
   <chr>       <chr> <dbl>                           <dbl>
 1 Afghanistan AFG    1949                          0.0019
 2 Afghanistan AFG    1950                          0.0109
 3 Afghanistan AFG    1951                          0.0117
 4 Afghanistan AFG    1952                          0.0115
 5 Afghanistan AFG    1953                          0.0132
 6 Afghanistan AFG    1954                          0.013 
 7 Afghanistan AFG    1955                          0.0186
 8 Afghanistan AFG    1956                          0.0218
 9 Afghanistan AFG    1957                          0.0343
10 Afghanistan AFG    1958                          0.038 
# … with 23,297 more rows
  1. Start with the tidy_emissions THEN
tidy_emissions  %>% 
  filter(year==1984)  %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 217
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 217 0
code 12 0.94 3 8 0 205 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1984.00 0.00 1984.00 1984.00 1984.0 1984.00 1984.0 ▁▁▇▁▁
annual_co2_emissions_per_capita 0 1 5.61 9.67 0.04 0.51 2.5 7.58 78.6 ▇▁▁▁▁

7- 12 observations have a missing code. how are these observations different - start with tidy_emissions then extract rows with year==1984 and are missing a code

tidy_emissions  %>% 
  filter(year==1984, is.na(code))
# A tibble: 12 × 4
   entity                     code   year annual_co2_emissions_per_ca…
   <chr>                      <chr> <dbl>                        <dbl>
 1 Africa                     <NA>   1984                         1.23
 2 Asia                       <NA>   1984                         1.74
 3 Asia (excl. China & India) <NA>   1984                         2.68
 4 EU-27                      <NA>   1984                         9.11
 5 EU-28                      <NA>   1984                         9.14
 6 Europe                     <NA>   1984                        10.6 
 7 Europe (excl. EU-27)       <NA>   1984                        12.6 
 8 Europe (excl. EU-28)       <NA>   1984                        13.3 
 9 North America              <NA>   1984                        13.9 
10 North America (excl. USA)  <NA>   1984                         5.21
11 Oceania                    <NA>   1984                        10.7 
12 South America              <NA>   1984                         1.87

Entities that are not countries do not have country codes

  1. Start with tidy_emissions THEN
emissions_1984  <- tidy_emissions %>% 
  filter(year==1984, !is.na(code))   %>% 
  select(-year)  %>% 
  rename(country=entity)
  1. which 15 countries have the highest annual_co2_emissions_per_capita?
max_15_emitters <- emissions_1984 %>% 
  slice_max(annual_co2_emissions_per_capita, n=15)

10- which 15 countries have the lowest annual_co2_emissions_per_capita?

min_15_emitters  <- emissions_1984  %>% 
  slice_min(annual_co2_emissions_per_capita, n=15)

11- Use bind_rows to bind together the max_15_emitters and min_15_emitters - assign the output to max_min_15

max_min_15  <- bind_rows(max_15_emitters, min_15_emitters)

12- Export max_min_15 to 3 file formats

max_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe separated

13- Read the 3 file formats into R

max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated 
max_min_15_psv <- read_delim("max_min_15.psv",delim = "|") # pipe-separated
  1. Use sediff to check for any differences among max_min_15_csv, max_min_15_tsv andmax_min_15_psv
setdiff(max_min_15_csv,max_min_15_tsv)
# A tibble: 0 × 3
# … with 3 variables: country <chr>, code <chr>,
#   annual_co2_emissions_per_capita <dbl>

Are there any differences?

15- Reorder country in max_min_15 for plotting and assign to max_min_15_plot_data

max_min_15_plot_data <- max_min_15 %>%
  mutate(country=reorder(country, annual_co2_emissions_per_capita))
  1. Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data,
       mapping = aes(x=annual_co2_emissions_per_capita, y=country))+
  geom_col()+
  labs(title = "the top 15 and bottom 15 annual CO2 emmissions per capita",
       subtitle = "for 1984",
       x= NULL,
       y=NULL)

17- Save the plot directory with this post

ggsave(filename = "preview.png",
       path = here("_posts","2022-02-17-reading-and-writing-data"))
  1. Add preview.png to yaml chuck at the top of this file

preview: preview.png